Let me be very clear: math is all about practice, and there are no shortcuts. So, please refer to B. S. Grewal's book for theory and practice questions. Here, I can only provide video links to help you understand the topic.πŸ™‚

Introduction to Elementary Complex Functions

If for each value of the complex variable z=(x+iy)z = (x + iy) in a given region R, we have one or more values of w(=u+iv)w (= u + iv), then ww is said to be a complex function of z and we write w=u(x,y)+iv(x,y)=f(z)w = u(x, y) + iv(x, y) = f(z) where u,vu, v are real functions of x and y.

If to each value of z, there corresponds one and only one value of w, then w is said to be a single-valued function of z otherwise a multi-valued function. For example, w=1zw = \frac{1}{z} is a single-valued function and w=zw = \sqrt{z} is a multi-valued function of z.

The former is defined at all points of the z-plane except at z = 0 and the latter assumes two values for each value of z except at z = 0.

Exponential Function

Please click here if you can't watch video.

Exponential Function:

When x is real, we are already familiar with the exponential function

ex=1+x1!+x22!+β‹―+xnn!+β€¦βˆž.e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots \infty.

Similarly, we define the exponential function of the complex variable z=x+iyz = x + iy, as

ezΒ orΒ exp⁑(z)=1+z1!+z22!+β‹―+znn!+β€¦βˆž.(i)e^z \text{ or } \exp(z) = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots + \frac{z^n}{n!} + \dots \infty. \quad \quad \text{(i)}

Properties:

  1. Exponential form of z=reiΞΈz = re^{i \theta}

    Putting x = 0 in (i), we get,

    eiy=1+iy1!+(iy)22!+(iy)33!+(iy)44!+β€¦βˆže^{iy} = 1 + \frac{iy}{1!} + \frac{(iy)^2}{2!} + \frac{(iy)^3}{3!} + \frac{(iy)^4}{4!} + \dots \infty

    =(1βˆ’y22!+y44!βˆ’β€¦β€‰)+i(yβˆ’y33!+y55!βˆ’β€¦β€‰)=cos⁑y+isin⁑y= \left( 1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \dots \right) + i \left( y - \frac{y^3}{3!} + \frac{y^5}{5!} - \dots \right) = \cos y + i \sin y

    Thus,

    ez=exβ‹…eiy=ex(cos⁑y+isin⁑y)e^z = e^x \cdot e^{iy} = e^x (\cos y + i \sin y)

    Also,

    x+iy=r(cos⁑θ+isin⁑θ)=reiθ. Thus, z=reiθx + iy = r(\cos \theta + i \sin \theta) = re^{i \theta}. \text{ Thus, } z = re^{i \theta}

  2. eze^z is periodic function having imaginary period 2Ο€i2 \pi i; [ez+2nΟ€i=ez,β€…β€Še2nΟ€i=e0=ex][e^{z + 2n \pi i} = e^z, \; e^{2n \pi i} = e^0 = e^x]

  3. eze^z is not zero for any value of z.

    Since,

    ez=exβ‹…eiy=reiΞΈΒ orΒ exβ‹…eiy=reiΞΈe^z = e^x \cdot e^{i y} = re^{i \theta} \text{ or } e^x \cdot e^{i y} = re^{i \theta}

    Therefore,

    r=ex>0,β€…β€Šy=ΞΈ,β€…β€Šβˆ£eiy∣=1,r = e^x > 0, \; y = \theta, \; |e^{iy}| = 1,

    Thus ∣ez∣=∣ex∣,β€…β€Šβˆ£eiy∣=exβ‰ 0.\text{Thus } |e^z| = |e^x|, \; |e^{iy}| = e^x \neq 0.

  4. ezβ€Ύ=ezβ€Ύe^{\overline{z}} = \overline{e^z}

    Since,

    ezβ€Ύ=exβˆ’iy=exβ‹…eβˆ’iy=ex(cos⁑yβˆ’isin⁑y)e^{\overline{z}} = e^{x - iy} = e^x \cdot e^{-iy} = e^x (\cos y - i \sin y)

    =ex(cos⁑y+isin⁑y)=ez= e^x (\cos y + i \sin y) = e^z

Trignometric and Hyperbolic Function

Trigonometric Functions

Trigonometric functions relate angles in a right triangle to the ratios of the triangle's side lengths. They are periodic functions and are fundamental in the study of waves, oscillations, and circular motion.

  1. Sine (sin⁑θ\sin \theta): Ratio of the length of the opposite side to the hypotenuse.

    sin⁑θ=oppositehypotenuse\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}

  2. Cosine (cos⁑θ\cos \theta): Ratio of the length of the adjacent side to the hypotenuse.

    cos⁑θ=adjacenthypotenuse\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}

  3. Tangent (tan⁑θ\tan \theta): Ratio of the length of the opposite side to the adjacent side.

    tan⁑θ=sin⁑θcos⁑θ=oppositeadjacent\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\text{opposite}}{\text{adjacent}}

  4. Cosecant (csc⁑θ\csc \theta): Reciprocal of sine.

    csc⁑θ=1sin⁑θ=hypotenuseopposite\csc \theta = \frac{1}{\sin \theta} = \frac{\text{hypotenuse}}{\text{opposite}}

  5. Secant (sec⁑θ\sec \theta): Reciprocal of cosine.

    sec⁑θ=1cos⁑θ=hypotenuseadjacent\sec \theta = \frac{1}{\cos \theta} = \frac{\text{hypotenuse}}{\text{adjacent}}

  6. Cotangent (cot⁑θ\cot \theta): Reciprocal of tangent.

    cot⁑θ=1tan⁑θ=cos⁑θsin⁑θ=adjacentopposite\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta} = \frac{\text{adjacent}}{\text{opposite}}

Key Trigonometric Identities:

  • Pythagorean Identity:

    sin⁑2θ+cos⁑2θ=1\sin^2 \theta + \cos^2 \theta = 1

  • Angle Sum and Difference Formulas:

    sin⁑(a±b)=sin⁑acos⁑b±cos⁑asin⁑b\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b

    cos⁑(aΒ±b)=cos⁑acos⁑bβˆ“sin⁑asin⁑b\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b

    tan⁑(aΒ±b)=tan⁑aΒ±tan⁑b1βˆ“tan⁑atan⁑b\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}

  • Double Angle Formulas:

    sin⁑2θ=2sin⁑θcos⁑θ\sin 2\theta = 2 \sin \theta \cos \theta

    cos⁑2ΞΈ=cos⁑2ΞΈβˆ’sin⁑2ΞΈ=2cos⁑2ΞΈβˆ’1=1βˆ’2sin⁑2ΞΈ\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1 = 1 - 2 \sin^2 \theta

    tan⁑2ΞΈ=2tan⁑θ1βˆ’tan⁑2ΞΈ\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}

Hyperbolic Function

It is not a single video but a playlist, and it contains two videos. When one video finishes, the next will play automatically.

Hyperbolic Function:

If x be real or complex,

(i) exβˆ’eβˆ’x2\frac{e^x - e^{-x}}{2} is defined as hyperbolic sine of x and is written as sinh⁑x\sinh x.

sinh⁑x=exβˆ’eβˆ’x2\sinh x = \frac{e^x - e^{-x}}{2}

(ii) ex+eβˆ’x2\frac{e^x + e^{-x}}{2} is defined as hyperbolic cosine of x and is written as cosh⁑x\cosh x.

cosh⁑x=ex+eβˆ’x2\cosh x = \frac{e^x + e^{-x}}{2}

Thus, sinh⁑x=exβˆ’eβˆ’x2\sinh x = \frac{e^x - e^{-x}}{2} and cosh⁑x=ex+eβˆ’x2\cosh x = \frac{e^x + e^{-x}}{2}.

Also we define,

tanh⁑x=sinh⁑xcosh⁑x=exβˆ’eβˆ’xex+eβˆ’x,coth⁑x=1tanh⁑x=ex+eβˆ’xexβˆ’eβˆ’x\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad \coth x = \frac{1}{\tanh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}

sech⁑x=1cosh⁑x=2ex+eβˆ’x,cosech⁑x=1sinh⁑x=2exβˆ’eβˆ’x\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}, \quad \operatorname{cosech} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}

Properties:

  • Periodic functions: sinh⁑z\sinh z and cosh⁑z\cosh z are periodic functions having imaginary period 2Ο€i2\pi i.

    sinh⁑(z+2Ο€i)=sinh⁑z;cosh⁑(z+2Ο€i)=cosh⁑z\sinh(z + 2\pi i) = \sinh z ; \quad \cosh(z + 2\pi i) = \cosh z

  • Even and odd functions: cosh⁑z\cosh z is an even function while sinh⁑z\sinh z is an odd function.

  • sinh⁑0=0\sinh 0 = 0, cosh⁑0=1\cosh 0 = 1, tanh⁑0=0\tanh 0 = 0.

  • Relations between hyperbolic and circular functions.

    Since for all values of \theta ,

    sin⁑θ=eiΞΈβˆ’eβˆ’iΞΈ2iandcos⁑θ=eiΞΈ+eβˆ’iΞΈ2\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} \quad \text{and} \quad \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}

    Therefore, putting ΞΈ=ix\theta = ix, we have

    sin⁑ix=eβˆ’xβˆ’ex2i=βˆ’(exβˆ’eβˆ’x)2i=isinh⁑x\sin ix = \frac{e^{-x} - e^x}{2i} = \frac{-(e^x - e^{-x})}{2i} = i \sinh x

    cos⁑ix=eβˆ’x+ex2=cosh⁑x\cos ix = \frac{e^{-x} + e^x}{2} = \cosh x

    sinh⁑ix=isin⁑x... (i)\sinh ix = i \sin x \quad \text{... (i)}

    cosh⁑ix=cos⁑x... (ii)\cosh ix = \cos x \quad \text{... (ii)}

    tanh⁑ix=itan⁑x... (iii)\tanh ix = i \tan x \quad \text{... (iii)}

    sinh⁑ix=isin⁑x... (iv)\sinh ix = i \sin x \quad \text{... (iv)}

    cosh⁑ix=cos⁑x... (v)\cosh ix = \cos x \quad \text{... (v)}

    tanh⁑ix=itan⁑x... (vi)\tanh ix = i \tan x \quad \text{... (vi)}

Inverse Trignometric and Hyperbolic

Inverse Trigonometric Functions

Inverse trigonometric functions are the inverses of the basic trigonometric functions: sine, cosine, tangent, cosecant, secant, and cotangent. They are used to find angles when the trigonometric values are known.

Definitions:

  • If y=sinβ‘βˆ’1xy = \sin^{-1} x, then sin⁑y=x\sin y = x for βˆ’Ο€2≀y≀π2-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}

  • If y=cosβ‘βˆ’1xy = \cos^{-1} x, then cos⁑y=x\cos y = x for 0≀y≀π0 \leq y \leq \pi

  • If y=tanβ‘βˆ’1xy = \tan^{-1} x, then tan⁑y=x\tan y = x for βˆ’Ο€2<y<Ο€2-\frac{\pi}{2} < y < \frac{\pi}{2}

  • If y=cscβ‘βˆ’1xy = \csc^{-1} x, then csc⁑y=x\csc y = x for βˆ’Ο€2≀y≀π2,yβ‰ 0-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, y \neq 0

  • If y=secβ‘βˆ’1xy = \sec^{-1} x, then sec⁑y=x\sec y = x for 0≀y≀π,yβ‰ Ο€20 \leq y \leq \pi, y \neq \frac{\pi}{2}

  • If y=cotβ‘βˆ’1xy = \cot^{-1} x, then cot⁑y=x\cot y = x for 0<y<Ο€0 < y < \pi

Principal Values:

The principal values for inverse trigonometric functions are as follows:

sinβ‘βˆ’1x∈[βˆ’Ο€2,Ο€2]\sin^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]

cosβ‘βˆ’1x∈[0,Ο€]\cos^{-1} x \in \left[0, \pi\right]

tanβ‘βˆ’1x∈(βˆ’Ο€2,Ο€2)\tan^{-1} x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)

cscβ‘βˆ’1x∈[βˆ’Ο€2,Ο€2]Β whereΒ yβ‰ 0\csc^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text{ where } y \neq 0

secβ‘βˆ’1x∈[0,Ο€]Β whereΒ yβ‰ Ο€2\sec^{-1} x \in \left[0, \pi\right] \text{ where } y \neq \frac{\pi}{2}

cotβ‘βˆ’1x∈(0,Ο€)\cot^{-1} x \in \left(0, \pi\right)

Properties:

  • Reciprocal Identities:

    sinβ‘βˆ’1x=cscβ‘βˆ’11x,cosβ‘βˆ’1x=secβ‘βˆ’11x,tanβ‘βˆ’1x=cotβ‘βˆ’11x\sin^{-1} x = \csc^{-1} \frac{1}{x}, \quad \cos^{-1} x = \sec^{-1} \frac{1}{x}, \quad \tan^{-1} x = \cot^{-1} \frac{1}{x}

  • Sum and Difference Formulas:

    sinβ‘βˆ’1x+cosβ‘βˆ’1x=Ο€2\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}

    tanβ‘βˆ’1x+cotβ‘βˆ’1x=Ο€2\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}

    secβ‘βˆ’1x+cscβ‘βˆ’1x=Ο€2\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}

  • Negative Argument Identities:

    sinβ‘βˆ’1(βˆ’x)=βˆ’sinβ‘βˆ’1(x)\sin^{-1}(-x) = -\sin^{-1}(x)

    cosβ‘βˆ’1(βˆ’x)=Ο€βˆ’cosβ‘βˆ’1(x)\cos^{-1}(-x) = \pi - \cos^{-1}(x)

    tanβ‘βˆ’1(βˆ’x)=βˆ’tanβ‘βˆ’1(x)\tan^{-1}(-x) = -\tan^{-1}(x)

  • Double Angle Formulas: For values ∣x∣<1|x| < 1,

    2sinβ‘βˆ’1x=sinβ‘βˆ’1(2x1βˆ’x2)2 \sin^{-1} x = \sin^{-1} (2x \sqrt{1 - x^2})

    2tanβ‘βˆ’1x=tanβ‘βˆ’1(2x1βˆ’x2)2 \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^2}\right)

  • Derivatives:

    ddxsinβ‘βˆ’1x=11βˆ’x2,∣x∣<1\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1

    ddxcosβ‘βˆ’1x=βˆ’11βˆ’x2,∣x∣<1\frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1 - x^2}}, \quad |x| < 1

    ddxtanβ‘βˆ’1x=11+x2,x∈R\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}, \quad x \in \mathbb{R}

    ddxcscβ‘βˆ’1x=βˆ’1∣x∣x2βˆ’1,∣x∣>1\frac{d}{dx} \csc^{-1} x = -\frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| > 1

    ddxsecβ‘βˆ’1x=1∣x∣x2βˆ’1,∣x∣>1\frac{d}{dx} \sec^{-1} x = \frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| > 1

    ddxcotβ‘βˆ’1x=βˆ’11+x2,x∈R\frac{d}{dx} \cot^{-1} x = -\frac{1}{1 + x^2}, \quad x \in \mathbb{R}

Inverse Hyperbolic Function

Inverse Hyperbolic Function:

If sinh⁑u=z\sinh u = z, then uu is called the hyperbolic sine inverse of zz and is written as u=sinhβ‘βˆ’1zu = \sinh^{-1} z. Similarly, we define coshβ‘βˆ’1z\cosh^{-1} z, tanhβ‘βˆ’1z\tanh^{-1} z, etc.

The inverse hyperbolic functions, like other inverse functions, are many-valued, but we shall consider only their principal values.

  • To show that

(i) sinhβ‘βˆ’1z=log⁑[z+z2+1]\sinh^{-1} z = \log [z + \sqrt{z^2 + 1}]

(ii) coshβ‘βˆ’1z=log⁑[z+(z2βˆ’1)]\cosh^{-1} z = \log [z + \sqrt{(z^2 - 1)}]

(iii) tanhβ‘βˆ’1z=12log⁑(1+z1βˆ’z)\tanh^{-1} z = \frac{1}{2} \log \left( \frac{1+z}{1-z} \right)

(i) Let sinhβ‘βˆ’1z=u\sinh^{-1} z = u, then z=sinh⁑u=12(euβˆ’eβˆ’u)z = \sinh u = \frac{1}{2} (e^u - e^{-u})

or

2z=euβˆ’eβˆ’uore2uβˆ’2zeuβˆ’1=02z = e^u - e^{-u} \quad \text{or} \quad e^{2u} - 2ze^u - 1 = 0

This being a quadratic in eue^u, we have

eu=2z+4z2+42=z+z2+1e^u = \frac{2z + \sqrt{4z^2 + 4}}{2} = z + \sqrt{z^2 + 1}

Thus, taking the positive sign only, we have

eu=z+z2+1oru=log⁑[z+z2+1]e^u = z + \sqrt{z^2 + 1} \quad \text{or} \quad u = \log \left[ z + \sqrt{z^2 + 1} \right]

Similarly, we can establish (ii).

(iii) Let tanhβ‘βˆ’1z=u\tanh^{-1} z = u, then z=tanh⁑uz = \tanh u

i.e.,

z=euβˆ’eβˆ’ueu+eβˆ’uz = \frac{e^u - e^{-u}}{e^u + e^{-u}}

Applying componendo and dividendo, we get

1+z1βˆ’z=e2u\frac{1+z}{1-z} = e^{2u}

or

2u=log⁑(1+z1βˆ’z)whenceΒ followsΒ theΒ result.2u = \log \left( \frac{1+z}{1-z} \right) \quad \text{whence follows the result.}

Logarithmic Function

It is not a single video but a playlist, and it contains two videos. When one video finishes, the next will play automatically.

Logarithmic Function:

  1. If z=(x+iy)z = (x + iy) and w=(u+iv)w = (u + iv) be so related that ew=ze^w = z, then ww is said to be a logarithm of zz to the base ee and is written as w=log⁑ezβ€…β€Šβ€…β€Šβ€…β€Štextiw = \log_e z\; \; \; text{i}. Also

    ew+2inΟ€=ewβ‹…e2inΟ€=z[∡e2inΟ€=1]e^{w + 2in\pi} = e^w \cdot e^{2in\pi} = z \quad \left[ \because e^{2in\pi} = 1 \right] Thus,

    log⁑z=w+2inΟ€β€…β€Šβ€…β€Šβ€…β€Šβ€…β€Šβ€…β€Šii\log z = w + 2in\pi \; \; \; \; \; \text{ii}

    i.e., the logarithm of a complex number has an infinite number of values and is, therefore, a multi-valued function.

    The general value of the logarithm of zz is written as Log z\text{Log } z (beginning with capital LL) so as to distinguish it from its principal value which is written as log⁑z\log z. This principal value is obtained by taking n=0n = 0 in Log z\text{Log } z.

    Thus from (i) and (ii),

    LogΒ (x+iy)=2inΟ€+log⁑(x+iy)\text{Log } (x + iy) = 2in\pi + \log (x + iy)

  2. Real and imaginary parts of Log (x+iy)(x + iy).

    LogΒ (x+iy)=2inΟ€+log⁑(x+iy)\text{Log } (x + iy) = 2in\pi + \log (x + iy)

    =2inΟ€+log⁑[r(cos⁑θ+isin⁑θ)]= 2in\pi + \log \left[ r (\cos \theta + i \sin \theta) \right]

    =2inΟ€+log⁑(reiΞΈ)= 2in\pi + \log \left( r e^{i\theta} \right)

    =2inΟ€+log⁑r+iΞΈ=log⁑x2+y2+i[2nΟ€+tanβ‘βˆ’1(yx)]= 2in\pi + \log r + i\theta = \log \sqrt{x^2 + y^2} + i \left[ 2n\pi + \tan^{-1} \left( \frac{y}{x} \right) \right]

    PutΒ x=rcos⁑θ, y=rsin⁑θ soΒ thatΒ r=x2+y2Β andΒ ΞΈ=tanβ‘βˆ’1(yx)\text{Put } x = r \cos \theta, \, y = r \sin \theta \text{ so that } r = \sqrt{x^2 + y^2} \text{ and } \theta = \tan^{-1} \left( \frac{y}{x} \right)

  3. Real and imaginary parts of (Ξ±+iΞ²)Ξ³+iΞ΄(\alpha + i \beta)^{\gamma + i \delta}.

    (Ξ±+iΞ²)Ξ³+iΞ΄=e(Ξ³+iΞ΄)log⁑(Ξ±+iΞ²)=e(Ξ³+iΞ΄)[log⁑r+i(ΞΈ+2nΟ€)](\alpha + i \beta)^{\gamma + i \delta} = e^{(\gamma + i \delta) \log (\alpha + i \beta)} = e^{(\gamma + i \delta) [\log r + i(\theta + 2n\pi)]}

    =e(Ξ³+iΞ΄)[log⁑r+iΞΈ]=e[Ξ³log⁑rβˆ’Ξ΄ΞΈ]ei[Ξ΄log⁑r+Ξ³ΞΈ+2nπγ]= e^{(\gamma + i \delta) [\log r + i\theta]} = e^{[\gamma \log r - \delta \theta]} e^{i[\delta \log r + \gamma \theta + 2n\pi \gamma]}

    =eA[cos⁑B+isin⁑B]= e^A [\cos B + i \sin B]

    where A=xlog⁑rβˆ’y(2nΟ€+ΞΈ)A = x \log r - y(2n\pi + \theta) and B=ylog⁑r+x(2nΟ€+ΞΈ)B = y \log r + x(2n\pi + \theta).

    ∴\therefore the required real part = eAcos⁑Be^A \cos B and the imaginary part = eAsin⁑Be^A \sin B.

Analytic Functions

It is not a single video but a playlist, and it contains ten videos. When one video finishes, the next will play automatically.

Analytic Functions:

A function f(z)f(z) which is single-valued and possesses a unique derivative with respect to zz at all points of a region RR, is called an analytic function of zz in that region. An analytic function is also called a regular function or a holomorphic function.

A function which is analytic everywhere in the complex plane, is known as an entire function. As derivative of a polynomial exists at every point, a polynomial of any degree is an entire function.

A point at which an analytic function ceases to possess a derivative is called a singular point of the function.

Thus if uu and vv are real single-valued functions of xx and yy such that βˆ‚u/βˆ‚x\partial u/\partial x, βˆ‚u/βˆ‚y\partial u/\partial y, βˆ‚v/βˆ‚x\partial v/\partial x, βˆ‚v/βˆ‚y\partial v/\partial y are continuous throughout a region RR, then the Cauchy-Riemann equations

βˆ‚uβˆ‚x=βˆ‚vβˆ‚yandβˆ‚uβˆ‚y=βˆ’βˆ‚vβˆ‚xβ€…β€Šβ€…β€Šβ€…β€Šβ€…β€Š(1)\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = - \frac{\partial v}{\partial x} \; \; \; \; \text{(1)}

are both necessary and sufficient conditions for the function f(z)=u+ivf(z) = u + iv to be analytic in RR.

The real and imaginary parts of an analytic function are called conjugate functions. The relation between two conjugate functions is given by the C-R equation (1).

Cauchy - Riemann Equations

It is not a single video but a playlist, and it contains six videos. When one video finishes, the next will play automatically.

How's article quality?

Last updated on -

Page Contents