(ii) Find the volume of the solid obtained by revolving one arc of the cycloid x=a(θ+sinθ) and y=a(1+cosθ) about the x-axis.
-
Parametric Equations:
The given parametric equations are:
x=a(θ+sinθ)
y=a(1+cosθ)
-
Volume of Revolution:
The volume V of a solid of revolution about the x-axis using the disk method is given by:
V=π∫aby2dθdxdθ
-
Compute dθdx:
First, we need to find dθdx:
x=a(θ+sinθ)
dθdx=a(1+cosθ)
-
Square of y:
Next, we find y2:
y=a(1+cosθ)
y2=a2(1+cosθ)2
-
Limits of Integration:
For one arc of the cycloid, θ ranges from 0 to 2π.
-
Set Up the Integral:
Substitute y2 and dθdx into the integral:
V=π∫02π[a2(1+cosθ)2][a(1+cosθ)]dθ
V=πa3∫02π(1+cosθ)3dθ
-
Expand and Integrate:
Expand (1+cosθ)3:
(1+cosθ)3=1+3cosθ+3cos2θ+cos3θ
Use the identities cos2θ=21+cos2θ and cos3θ=43cosθ+cos3θ:
(1+cosθ)3=1+3cosθ+3(21+cos2θ)+(43cosθ+cos3θ)
Simplify:
(1+cosθ)3=1+3cosθ+23(1+cos2θ)+43cosθ+41cos3θ
(1+cosθ)3=25+415cosθ+23cos2θ+41cos3θ
Integrate each term:
∫02π⋅
(25+415cosθ+23cos2θ+41cos3θ)⋅
dθ
Since the integrals of cosθ, cos2θ, and cos3θ over one period are zero,
we only need to integrate the constant term:
∫02π25dθ=25θ02π=25⋅2π=5π
-
Final Volume:
V=πa3⋅5π=5π2a3
Thus, the volume of the solid is: 5π2a3.
SECTION - C
5. (i) In a plane triangle, find the maximum value of cos A cos B cos C.
We have A+B+C=π so that C=π−(A+B).
cosAcosBcosC=cosAcosBcos[π−(A+B)]
=−cosAcosBcos(A+B)=f(A,B), say.
We get,
∂A∂f=cosB[sinAcos(A+B)+
cosAsin(A+B)]
=cosBsin(2A+B)
and
∂B∂f=cosAsin(A+2B)
∂A∂f=0,∂B∂f=0only when A=B=π/3.
Also
r=∂A2∂2f=2cosBcos(2A+B),t=∂B2∂2f=2cosAcos(A+2B)
s=∂A∂B∂2f=−sinBsin(2A+B)+cosBcos(2A+B)=cos(2A+2B)
When A=B=π/3 , r=−1, s=−1/2,t=−1 so that rt−s2=3/4.
These show that f(A, B) is maximum for A=B=π/3.
Then C=π−(A+B)=π/3.
Hence cosAcosBcosC is maximum when each of the angles is π/3 i.e., the triangle is equilateral and its maximum value is 1/8.
(ii) If u=log(x3+y3+z3−3xyz), show that:
(∂x∂+∂y∂+∂z∂)2u=(x+y+z)2−9
We have,
∂x∂u=x3+y3+z3−3xyz3x2−3yz,∂y∂u=x3+y3+z3−3xyz3y2−3zx,∂z∂u=x3+y3+z3−3xyz3z2−3xy
∴∂x∂u+∂y∂u+∂z∂u=x3+y3+z3−3xyz3(x2+y2+z2−xy−yz−zx)
=(x+y+z)(x2+y2+z2−xy−yz−zx)3(x2+y2+z2−xy−yz−zx)=x+y+z3
Now(∂x∂+∂y∂+∂z∂)2u=(∂x∂+∂y∂+∂z∂)(∂x∂u+∂y∂u+∂z∂u)
=(∂x∂+∂y∂+∂z∂)(x+y+z3)
=−(x+y+z)23−(x+y+z)23−(x+y+z)23=−(x+y+z)29.
6. (i) If u=xy, show that ∂x2∂y∂2u=∂x∂y∂z∂3u.
Given:
u=xy
We want to show that:
∂x2∂y∂2u=∂x∂y∂z∂3u
First, we compute the second partial derivative ∂x2∂y∂2u:
∂x∂u=yxy−1
∂x2∂2u=y(y−1)xy−2
∂x2∂y∂2u=∂y∂(y(y−1)xy−2)
Next, we compute the third partial derivative ∂x∂y∂z∂3u:
Since u=xy does not depend on z, we have:
∂x∂y∂z∂3u=∂z∂(∂x∂y∂2u)=0
Similarly, for ∂x2∂y∂2u, we have:
∂x2∂y∂2u=0
Therefore,
∂x2∂y∂2u=∂x∂y∂z∂3u
(ii) Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.
Let 2x, 2y, 2z be the length, breadth, and height of the rectangular solid so that its volume V = 8xyz.
V=8xyz...(i)
Let R be the radius of the sphere so that x2+y2+z2=R2.
F(x,y,z)=8xyz+λ(x2+y2+z2−R2)...(ii)
and
∂x∂F=0,∂y∂F=0,∂z∂F=0
give
8yz+2xλ=0,8xz+2yλ=0,8xy+2zλ=0
or
2x2λ=−8xyz=2y2λ=2z2λ
Thus, for a maximum volume x=y=z.
i.e., the rectangular solid is a cube.
Go to next page for rest of
the questions.