Question Paper Solution


SECTION - A

1. (i) Examine the Convergence of the series:

x1+x+x21+x2+x31+x3+\frac{x}{1+x} + \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} + \cdots

Here un=xn1+xnu_n = \frac{x^n}{1 + x^n} and un+1=xn+11+xn+1u_{n+1} = \frac{x^{n+1}}{1 + x^{n+1}}

Ltnunun+1=Ltn(xnxn+11+xn+11+xn)=Ltn(1+xn+1x+xn)=1x, if x<1.\text{Lt}_{n \to \infty} \frac{u_n}{u_{n+1}} = \text{Lt}_{n \to \infty} \left( \frac{x^n}{x^{n+1}} \cdot \frac{1 + x^{n+1}}{1 + x^n} \right) = \text{Lt}_{n \to \infty} \left( \frac{1 + x^{n+1}}{x + x^n} \right) = \frac{1}{x}, \text{ if } x < 1.

[Since xn+10 as n]\left[ \text{Since } x^{n+1} \to 0 \text{ as } n \to \infty \right]

Also,

Ltnunun+1=Ltn(1+1/xn+11+x/xn+1)=1 if x>1.\text{Lt}_{n \to \infty} \frac{u_n}{u_{n+1}} = \text{Lt}_{n \to \infty} \left( \frac{1 + 1/x^{n+1}}{1 + x/x^{n+1}} \right) = 1 \text{ if } x > 1.

by Ratio test,un converges for x<1 and fails for x1.\text{by Ratio test,} \sum u_n \text{ converges for } x < 1 \text{ and fails for } x \geq 1.

When x=1x = 1, un=12+12+12++\sum u_n = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots + \infty, which is divergent.

Hence the given series converges for x<1x < 1 and diverges for x1x \geq 1.

(ii) Discuss the convergence of the series:

12x+3x24x3+(x<12)1 - 2x + 3x^2 - 4x^3 + \cdots \quad \left( x < \frac{1}{2} \right)

To discuss the convergence of the series:

12x+3x24x3+(x<12)1 - 2x + 3x^2 - 4x^3 + \cdots \quad \left( x < \frac{1}{2} \right)

We can start by considering the general term and applying appropriate convergence tests.

Analysis of the General Term

The general term of the series can be written as:

an=(1)n(n+1)xna_n = (-1)^n (n+1) x^n

Ratio Test

The ratio test can be used to determine the convergence of the series. For the ratio test, we examine the limit of the absolute value of the ratio of successive terms:

limnan+1an \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|

Let's compute this limit:

an+1an=(1)n+1(n+2)xn+1(1)n(n+1)xn=(n+2)xn+1=xn+2n+1\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^{n+1} (n+2) x^{n+1}}{(-1)^n (n+1) x^n} \right| = \left| \frac{(n+2) x}{n+1} \right| = \left| x \cdot \frac{n+2}{n+1} \right|

As nn \to \infty:

limnxn+2n+1=x1=x\lim_{n \to \infty} \left| x \cdot \frac{n+2}{n+1} \right| = \left| x \cdot 1 \right| = |x|

For the series to converge, the ratio must be less than 1:

x<1 |x| < 1

Given the condition x<12x < \frac{1}{2}, it is clear that x<12|x| < \frac{1}{2}, which is indeed less than 1. Hence, the ratio test confirms the convergence of the series for x<12x < \frac{1}{2}.

2. (i) Test the following series for absolute convergence:

n=1(1)n12n1\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}

Given series is un=113+1517+........\sum u_n = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ........\infty

This is an alternating series of which terms go on decreasing and

Ltnun=Ltn12n1=0\text{Lt}_{n \to \infty} u_n = \text{Lt}_{n \to \infty} \frac{1}{2n - 1} = 0 by Leibnitz’s rule, un converges.\text{by Leibnitz's rule, } \sum u_n \text{ converges.}

The series of absolute terms is 1+13+15+17+1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots \infty

Here un=12n1u_n = \frac{1}{2n - 1}. Taking vn=1nv_n = \frac{1}{n}, we have

Ltnunvn=Ltn(12n11n)=Ltn(n2n1)=Ltn(121n)=120 and finite.\text{Lt}_{n \to \infty} \frac{u_n}{v_n} = \text{Lt}_{n \to \infty} \left( \frac{\frac{1}{2n - 1}}{\frac{1}{n}} \right) = \text{Lt}_{n \to \infty} \left( \frac{n}{2n - 1} \right) = \text{Lt}_{n \to \infty} \left( \frac{1}{2 - \frac{1}{n}} \right) = \frac{1}{2} \ne 0 \text{ and finite.}

by Comparison test, \text{by Comparison test, }

un diverges because,vn diverges. \sum u_n \text{ diverges because,} \sum v_n \text{ diverges.}

Hence the given series converges and the series of absolute terms diverges, therefore the given series converges conditionally.

(ii) Examine for term by term integration the series which fn(x)=nxen2x2f_n(x) = nxe^{-n^2 x^2} in the intervals (i)[0,1](i) [0, 1] and (ii)[c,1](ii) [c, 1] where 0<c<10 < c < 1.

To examine the series for term-by-term integration where fn(x)=nxen2x2f_n(x) = nxe^{-n^2 x^2} in the intervals (i)[0,1](i) [0, 1] and (ii)[c,1](ii) [c, 1] where 0<c<10 < c < 1, we need to check whether the series n=1fn(x)\sum_{n=1}^{\infty} f_n(x) can be integrated term by term within these intervals.

Series Definition

The series is:

n=1nxen2x2\sum_{n=1}^{\infty} nxe^{-n^2 x^2}

Term-by-Term Integration

For term-by-term integration, we need to ensure uniform convergence of the series within the given intervals.

Interval (i): [0,1][0, 1]

Let's analyze the behavior of fn(x)f_n(x) on the interval [0,1][0, 1].

  1. Pointwise Convergence:

    For each fixed x[0,1]x \in [0, 1]:

    limnfn(x)=limnnxen2x2 \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} nxe^{-n^2 x^2}

    Since en2x2e^{-n^2 x^2} decays very rapidly as n increases, fn(x)0f_n(x) \to 0 for each x[0,1]x \in [0, 1].

  2. Uniform Convergence:

    To check uniform convergence on [0,1][0, 1], consider the maximum value of fn(x)f_n(x):

    fn(x)=nxen2x2 f_n(x) = nxe^{-n^2 x^2}

    Let gn(x)=nen2x2g_n(x) = ne^{-n^2 x^2}. The maximum of gn(x)g_n(x) occurs at x=1nx = \frac{1}{n}:

    gn(1n)=nen2(1n)2=ne1 g_n\left(\frac{1}{n}\right) = ne^{-n^2 \left(\frac{1}{n}\right)^2} = ne^{-1}

    Thus, for x[0,1]x \in [0, 1]:

    fn(x)nxen2x2ne1|f_n(x)| \leq nxe^{-n^2 x^2} \leq ne^{-1}

    Since ne10ne^{-1} \to 0 as nn \to \infty, the series converges uniformly to 0 on [0,1][0, 1].

Interval (ii): [c,1][c, 1] where 0<c<10 < c < 1

  1. Pointwise Convergence:

    For each fixed x[c,1]x \in [c, 1]:

    limnfn(x)=limnnxen2x2=0\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} nxe^{-n^2 x^2} = 0

    As before, fn(x)0f_n(x) \to 0 for each x[c,1]x \in [c, 1].

  2. Uniform Convergence:

    On [c,1][c, 1], the behavior of fn(x)f_n(x) is more straightforward since x is bounded away from 0:

    fn(x)=nxen2x2 f_n(x) = nxe^{-n^2 x^2}

    For xcx \geq c:

    fn(x)nen2c2 f_n(x) \leq ne^{-n^2 c^2}

    As nn \to \infty:

    nen2c20ne^{-n^2 c^2} \to 0

    Therefore, the series converges uniformly to 0 on [c,1][c, 1].


SECTION - B

3. (i) Verify Rolle's theorem for the function f(x)=x(x+3)ex2f(x) = x(x + 3)e^{\frac{-x}{2}} in [3,0][-3, 0].

To verify Rolle's Theorem for the function f(x)=x(x+3)ex2f(x) = x(x+3)e^{\frac{-x}{2}} in the interval [3,0][-3, 0], we need to check the hypotheses of Rolle's Theorem and then find the value of cc in the interval (3,0)(-3, 0) where f(c)=0f'(c) = 0.

Rolle's Theorem states that if a function is continuous on the closed interval [a,b][a, b] and differentiable on the open interval (a,b)(a, b), then:

  1. Continuity and Differentiability:
    The given function f(x)=x(x+3)ex2f(x) = x(x+3)e^{\frac{-x}{2}} is a product of a polynomial and an exponential function, which are both continuous and differentiable everywhere. Hence, ff is continuous on [3,0][-3, 0] and differentiable on (3,0)(-3, 0).

  2. Checking f(a)=f(b)f(a) = f(b):
    We need to verify that f(3)=f(0)f(-3) = f(0).
    f(3)=(3)(3+3)e32=(3)(0)e32=0f(-3) = (-3)(-3+3)e^{\frac{3}{2}} = (-3)(0)e^{\frac{3}{2}} = 0
    f(0)=0(0+3)e32=0f(0) = 0(0+3)e^{\frac{-3}{2}} = 0
    Since f(3)=f(0)=0f(-3) = f(0) = 0, the function satisfies the condition f(a)=f(b)f(a) = f(b).

  3. Finding cc where f(c)=0f'(c) = 0:
    According to Rolle's Theorem, there exists a value of cc such that f(c)=0f'(c) = 0.

    The function is given as:
    f(x)=x(x+3)ex2f(x) = x(x+3)e^{\frac{-x}{2}}
    Expanding it:
    f(x)=(x2+3x)ex2f(x) = (x^2 + 3x)e^{\frac{-x}{2}}

    Using the product rule for differentiation:
    f(x)=(2x+3)ex2+(x2+3x)(12)ex2f'(x) = (2x + 3)e^{\frac{-x}{2}} + (x^2 + 3x)\left(-\frac{1}{2}\right)e^{\frac{-x}{2}}
    Simplifying:
    f(x)=ex2[(2x+3)12(x2+3x)]f'(x) = e^{\frac{-x}{2}} \left[(2x + 3) - \frac{1}{2}(x^2 + 3x)\right]
    f(x)=ex2[4x+6x23x2]f'(x) = e^{\frac{-x}{2}} \left[\frac{4x + 6 - x^2 - 3x}{2}\right]
    f(x)=ex2[x2+x+6]f'(x) = e^{\frac{-x}{2}} \left[-x^2 + x + 6\right]

    Solving f(x)=0f'(x) = 0:
    ex2[x2x6]=0e^{\frac{-x}{2}}[x^2 - x - 6] = 0
    Since ex20e^{\frac{-x}{2}} \neq 0, we solve:
    x2x6=0x^2 - x - 6 = 0
    Factoring:
    x23x+2x6=0x^2 - 3x + 2x - 6 = 0
    x(x3)+2(x3)=0x(x - 3) + 2(x - 3) = 0
    (x+2)(x3)=0(x + 2)(x - 3) = 0
    x=2orx=3x = -2 \quad \text{or} \quad x = 3

    Since x=2x = -2 lies in the interval [3,0][-3, 0], we take c=2c = -2.

Hence, Rolle's Theorem is verified.

(ii) Use Cauchy's Mean Value theorem to evaluate:

limx1cos(πx2)log(1x)\lim_{x \to 1} \frac{\cos\left(\frac{\pi x}{2}\right)}{\log\left(\frac{1}{x}\right)}

Cauchy's Mean Value Theorem states that if functions f and g are continuous on [a,b][a, b] and differentiable on (a,b)(a, b), and g(x)0g'(x) \neq 0 for all x(a,b)x \in (a, b), then there exists a point c(a,b)c \in (a, b) such that:

f(c)g(c)=f(b)f(a)g(b)g(a) \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}

We need to evaluate the following limit using CMVT:

limx1cos(πx2)log(1x) \lim_{x \to 1} \frac{\cos\left(\frac{\pi x}{2}\right)}{\log\left(\frac{1}{x}\right)}

Steps to Solve:

  1. Rewrite the limit in a suitable form:

    We rewrite the limit as:

    limx1cos(πx2)log(1x)\lim_{x \to 1} \frac{\cos\left(\frac{\pi x}{2}\right)}{\log\left(\frac{1}{x}\right)}

    Notice that log(1x)=log(x)\log\left(\frac{1}{x}\right) = -\log(x), so the limit becomes:

    limx1cos(πx2)log(x)\lim_{x \to 1} \frac{\cos\left(\frac{\pi x}{2}\right)}{-\log(x)}

    This is in the form f(x)g(x)\frac{f(x)}{g(x)}, where f(x)=cos(πx2)f(x) = \cos\left(\frac{\pi x}{2}\right) and g(x)=log(x)g(x) = -\log(x).

  2. Apply CMVT:

    By CMVT, there exists a point c(a,b)c \in (a, b) such that:

    f(c)g(c)=f(b)f(a)g(b)g(a)\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}

    Let a=xa = x and b=1b = 1.

    So,

    f(c)g(c)=cos(π2)cos(πx2)log(1)(log(x))\frac{f'(c)}{g'(c)} = \frac{\cos\left(\frac{\pi}{2}\right) - \cos\left(\frac{\pi x}{2}\right)}{-\log(1) - (-\log(x))}

    Simplifying this,

    f(c)g(c)=0cos(πx2)0(log(x))=cos(πx2)log(x)\frac{f'(c)}{g'(c)} = \frac{0 - \cos\left(\frac{\pi x}{2}\right)}{0 - (-\log(x))} = \frac{-\cos\left(\frac{\pi x}{2}\right)}{\log(x)}

    So, the point cc satisfies:

    limx1cos(πc2)log(c)\lim_{x \to 1} \frac{-\cos\left(\frac{\pi c}{2}\right)}{\log(c)}
  3. Evaluate the derivatives:

    To use CMVT properly, let's calculate the derivatives f(x)f'(x) and g(x)g'(x):

    f(x)=cos(πx2)    f(x)=π2sin(πx2)f(x) = \cos\left(\frac{\pi x}{2}\right) \implies f'(x) = -\frac{\pi}{2} \sin\left(\frac{\pi x}{2}\right)

    g(x)=log(x)    g(x)=1xg(x) = -\log(x) \implies g'(x) = -\frac{1}{x}
  4. Use the derivatives in the limit:

    Now, applying these derivatives:

    limx1f(x)g(x)=limx1π2sin(πx2)1x=limx1π2sin(πx2)1x=limx1πx2sin(πx2)\lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{-\frac{\pi}{2} \sin\left(\frac{\pi x}{2}\right)}{-\frac{1}{x}} = \lim_{x \to 1} \frac{\frac{\pi}{2} \sin\left(\frac{\pi x}{2}\right)}{\frac{1}{x}} = \lim_{x \to 1} \frac{\pi x}{2} \sin\left(\frac{\pi x}{2}\right)

  5. Simplify and evaluate the final limit:

    As x1x \to 1,

    πx2π2andsin(πx2)sin(π2)=1\frac{\pi x}{2} \to \frac{\pi}{2} \quad \text{and} \quad \sin\left(\frac{\pi x}{2}\right) \to \sin\left(\frac{\pi}{2}\right) = 1

    Therefore,

    limx1πx2sin(πx2)=π21=π2\lim_{x \to 1} \frac{\pi x}{2} \sin\left(\frac{\pi x}{2}\right) = \frac{\pi}{2} \cdot 1 = \frac{\pi}{2}

4. (i) Find the length of the arc of the parabola y24y+2x=0y^2 - 4y + 2x = 0 which lies in the first quadrant.

  1. Rewrite the Equation:

    Given equation:

    y24y+2x=0y^2 - 4y + 2x = 0

    Completing the square for the y-terms:

    y24y=2xy^2 - 4y = -2x (y24y+4)4=2x(y^2 - 4y + 4) - 4 = -2x (y2)24=2x(y - 2)^2 - 4 = -2x (y2)2=2(x+2)(y - 2)^2 = 2(x + 2)

    Standard form:

    (y2)2=2(x+2)(y - 2)^2 = 2(x + 2)
  2. Range of y Values:

    In the first quadrant, both x and y are positive. For the arc in the first quadrant, we consider y2y \geq 2.

  3. Set Up the Arc Length Integral:

    The formula for the arc length L of a curve y=f(x)y = f(x) from x = a to x = b is:

    L=ab1+(dydx)2dxL = \int_a^b \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx

    Solve for x in terms of y:

    (y2)2=2(x+2) (y - 2)^2 = 2(x + 2) x+2=(y2)22 x + 2 = \frac{(y - 2)^2}{2} x=(y2)222 x = \frac{(y - 2)^2}{2} - 2 dxdy=ddy((y2)222)\frac{dx}{dy} = \frac{d}{dy} \left( \frac{(y - 2)^2}{2} - 2 \right) dxdy=122(y2)\frac{dx}{dy} = \frac{1}{2} \cdot 2(y - 2) dxdy=y2\frac{dx}{dy} = y - 2

    Arc length integral in terms of y:

    L=y1y21+(dxdy)2dyL = \int_{y_1}^{y_2} \sqrt{1 + \left( \frac{dx}{dy} \right)^2} \, dy

    Assume y1=2y_1 = 2 and y2=4y_2 = 4:

    L=241+(y2)2dyL = \int_{2}^{4} \sqrt{1 + (y - 2)^2} \, dy
  4. Evaluate the Integral:

    Let u=y2u = y - 2. Then du=dydu = dy, and the bounds change from y=2y = 2 to y=4y = 4 to u=0u = 0 to u=2u = 2:

    L=021+u2du L = \int_{0}^{2} \sqrt{1 + u^2} \, du

    Using trigonometric substitution, let u=sinh(t)u = \sinh(t), then du=cosh(t)dtdu = \cosh(t) \, dt:

    L=0sinh1(2)1+sinh2(t)cosh(t)dtL = \int_{0}^{\sinh^{-1}(2)} \sqrt{1 + \sinh^2(t)} \cosh(t) \, dt

    Since 1+sinh2(t)=cosh(t)\sqrt{1 + \sinh^2(t)} = \cosh(t):

    L=0sinh1(2)cosh2(t)dt L = \int_{0}^{\sinh^{-1}(2)} \cosh^2(t) \, dt

    Using the identity cosh2(t)=1+cosh(2t)2\cosh^2(t) = \frac{1 + \cosh(2t)}{2}:

    L=0sinh1(2)1+cosh(2t)2dt L = \int_{0}^{\sinh^{-1}(2)} \frac{1 + \cosh(2t)}{2} \, dt

    L=120sinh1(2)1dt+120sinh1(2)cosh(2t)dtL = \frac{1}{2} \int_{0}^{\sinh^{-1}(2)} 1 \, dt + \frac{1}{2} \int_{0}^{\sinh^{-1}(2)} \cosh(2t) \, dt

    Evaluate the integrals:

    L=12[t]0sinh1(2)+14[sinh(2t)]0sinh1(2)L = \frac{1}{2} \left[ t \right]_{0}^{\sinh^{-1}(2)} + \frac{1}{4} \left[ \sinh(2t) \right]_{0}^{\sinh^{-1}(2)}

    L=12[sinh1(2)]+14[sinh(2sinh1(2))sinh(0)]L = \frac{1}{2} \left[ \sinh^{-1}(2) \right] + \frac{1}{4} \left[ \sinh(2 \sinh^{-1}(2)) - \sinh(0) \right]

    L=12sinh1(2)+14[221+4]L = \frac{1}{2} \sinh^{-1}(2) + \frac{1}{4} \left[ 2 \cdot 2 \sqrt{1 + 4} \right] L=12sinh1(2)+1445 L = \frac{1}{2} \sinh^{-1}(2) + \frac{1}{4} \cdot 4\sqrt{5} L=12sinh1(2)+5 L = \frac{1}{2} \sinh^{-1}(2) + \sqrt{5}

    Thus, the arc length is:

    12sinh1(2)+5 \frac{1}{2} \sinh^{-1}(2) + \sqrt{5}

Go to next page for rest of the questions.

How's article quality?

Page Contents